Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(4): 147, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462552

RESUMO

Legumes can establish a mutual association with soil-derived nitrogen-fixing bacteria called 'rhizobia' forming lateral root organs called root nodules. Rhizobia inside the root nodules get transformed into 'bacteroids' that can fix atmospheric nitrogen to ammonia for host plants in return for nutrients and shelter. A substantial 200 million tons of nitrogen is fixed annually through biological nitrogen fixation. Consequently, the symbiotic mechanism of nitrogen fixation is utilized worldwide for sustainable agriculture and plays a crucial role in the Earth's ecosystem. The development of effective nitrogen-fixing symbiosis between legumes and rhizobia is very specialized and requires coordinated signaling. A plethora of plant-derived nodule-specific cysteine-rich (NCR or NCR-like) peptides get actively involved in this complex and tightly regulated signaling process of symbiosis between some legumes of the IRLC (Inverted Repeat-Lacking Clade) and Dalbergioid clades and nitrogen-fixing rhizobia. Recent progress has been made in identifying two such peptidases that actively prevent bacterial differentiation, leading to symbiotic incompatibility. In this review, we outlined the functions of NCRs and two nitrogen-fixing blocking peptidases: HrrP (host range restriction peptidase) and SapA (symbiosis-associated peptidase A). SapA was identified through an overexpression screen from the Sinorhizobium meliloti 1021 core genome, whereas HrrP is inherited extra-chromosomally. Interestingly, both peptidases affect the symbiotic outcome by degrading the NCR peptides generated from the host plants. These NCR-degrading peptidases can shed light on symbiotic incompatibility, helping to elucidate the reasons behind the inefficiency of nitrogen fixation observed in certain groups of rhizobia with specific legumes.


Assuntos
Medicago truncatula , Rhizobium , Peptídeo Hidrolases/genética , Rhizobium/genética , Rhizobium/metabolismo , Simbiose , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Ecossistema , Peptídeos/metabolismo , Verduras , Nitrogênio , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/microbiologia
2.
J Mol Model ; 29(8): 239, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423912

RESUMO

CONTEXT: Protein-protein interaction (PPI) is a key component linked to virtually all cellular processes. Be it an enzyme catalysis ('classic type functions' of proteins) or a signal transduction ('non-classic'), proteins generally function involving stable or quasi-stable multi-protein associations. The physical basis for such associations is inherent in the combined effect of shape and electrostatic complementarities (Sc, EC) of the interacting protein partners at their interface, which provides indirect probabilistic estimates of the stability and affinity of the interaction. While Sc is a necessary criterion for inter-protein associations, EC can be favorable as well as disfavored (e.g., in transient interactions). Estimating equilibrium thermodynamic parameters (∆Gbinding, Kd) by experimental means is costly and time consuming, thereby opening windows for computational structural interventions. Attempts to empirically probe ∆Gbinding from coarse-grain structural descriptors (primarily, surface area based terms) have lately been overtaken by physics-based, knowledge-based and their hybrid approaches (MM/PBSA, FoldX, etc.) that directly compute ∆Gbinding without involving intermediate structural descriptors. METHODS: Here, we present EnCPdock ( https://www.scinetmol.in/EnCPdock/ ), a user-friendly web-interface for the direct conjoint comparative analyses of complementarity and binding energetics in proteins. EnCPdock returns an AI-predicted ∆Gbinding computed by combining complementarity (Sc, EC) and other high-level structural descriptors (input feature vectors), and renders a prediction accuracy comparable to the state-of-the-art. EnCPdock further locates a PPI complex in terms of its {Sc, EC} values (taken as an ordered pair) in the two-dimensional complementarity plot (CP). In addition, it also generates mobile molecular graphics of the interfacial atomic contact network for further analyses. EnCPdock also furnishes individual feature trends along with the relative probability estimates (Prfmax) of the obtained feature-scores with respect to the events of their highest observed frequencies. Together, these functionalities are of real practical use for structural tinkering and intervention as might be relevant in the design of targeted protein-interfaces. Combining all its features and applications, EnCPdock presents a unique online tool that should be beneficial to structural biologists and researchers across related fraternities.


Assuntos
Proteínas , Modelos Moleculares , Proteínas/química , Ligação Proteica
3.
Vaccines (Basel) ; 10(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35214759

RESUMO

The COVID-19 origin debate has greatly been influenced by genome comparison studies of late, revealing the emergence of the Furin-like cleavage site at the S1/S2 junction of the SARS-CoV-2 Spike (FLCSSpike) containing its 681PRRAR685 motif, absent in other related respiratory viruses. Being the rate-limiting (i.e., the slowest) step, the host Furin cleavage is instrumental in the abrupt increase in transmissibility in COVID-19, compared to earlier onsets of respiratory viral diseases. In such a context, the current paper entraps a 'disorder-to-order transition' of the FLCSSpike (concomitant to an entropy arrest) upon binding to Furin. The interaction clearly seems to be optimized for a more efficient proteolytic cleavage in SARS-CoV-2. The study further shows the formation of dynamically interchangeable and persistent networks of salt-bridges at the Spike-Furin interface in SARS-CoV-2 involving the three arginines (R682, R683, R685) of the FLCSSpike with several anionic residues (E230, E236, D259, D264, D306) coming from Furin, strategically distributed around its catalytic triad. Multiplicity and structural degeneracy of plausible salt-bridge network archetypes seem to be the other key characteristic features of the Spike-Furin binding in SARS-CoV-2, allowing the system to breathe-a trademark of protein disorder transitions. Interestingly, with respect to the homologous interaction in SARS-CoV (2002/2003) taken as a baseline, the Spike-Furin binding events, generally, in the coronavirus lineage, seems to have preference for ionic bond formation, even with a lesser number of cationic residues at their potentially polybasic FLCSSpike patches. The interaction energies are suggestive of characteristic metastabilities attributed to Spike-Furin interactions, generally to the coronavirus lineage, which appears to be favorable for proteolytic cleavages targeted at flexible protein loops. The current findings not only offer novel mechanistic insights into the coronavirus molecular pathology and evolution, but also add substantially to the existing theories of proteolytic cleavages.

4.
Sci Rep ; 11(1): 11779, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083727

RESUMO

In the Medicago truncatula-Sinorhizobium meliloti symbiosis, chemical signaling initiates rhizobial infection of root nodule tissue, where a large portion of the bacteria are endocytosed into root nodule cells to function in nitrogen-fixing organelles. These intracellular bacteria are subjected to an arsenal of plant-derived nodule-specific cysteine-rich (NCR) peptides, which induce the physiological changes that accompany nitrogen fixation. NCR peptides drive these intracellular bacteria toward terminal differentiation. The bacterial peptidase HrrP was previously shown to degrade host-derived NCR peptides and give the bacterial symbionts greater fitness at the expense of host fitness. The hrrP gene is found in roughly 10% of Sinorhizobium isolates, as it is carried on an accessory plasmid. The objective of the present study is to identify peptidase genes in the core genome of S. meliloti that modulate symbiotic outcome in a manner similar to the accessory hrrP gene. In an overexpression screen of annotated peptidase genes, we identified one such symbiosis-associated peptidase (sap) gene, sapA (SMc00451). When overexpressed, sapA leads to a significant decrease in plant fitness. Its promoter is active in root nodules, with only weak expression evident under free-living conditions. The SapA enzyme can degrade a broad range of NCR peptides in vitro.


Assuntos
Interações entre Hospedeiro e Microrganismos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Rhizobium/enzimologia , Rhizobium/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Peptídeo Hidrolases/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Relação Estrutura-Atividade
5.
Appl Environ Microbiol ; 87(15): e0300420, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33990306

RESUMO

Some soil bacteria, called rhizobia, can interact symbiotically with legumes, in which they form nodules on the plant roots, where they can reduce atmospheric dinitrogen to ammonia, a form of nitrogen that can be used by growing plants. Rhizobium-plant combinations can differ in how successful this symbiosis is: for example, Sinorhizobium meliloti Rm1021 forms a relatively ineffective symbiosis with Medicago truncatula Jemalong A17, but Sinorhizobium medicae WSM419 is able to support more vigorous plant growth. Using proteomic data from free-living and symbiotic S. medicae WSM419, we previously identified a subset of proteins that were not closely related to any S. meliloti Rm1021 proteins and speculated that adding one or more of these proteins to S. meliloti Rm1021 would increase its effectiveness on M. truncatula A17. Three genes, Smed_3503, Smed_5985, and Smed_6456, were cloned into S. meliloti Rm1021 downstream of the E. coli lacZ promoter. Strains with these genes increased nodulation and improved plant growth, individually and in combination with one another. Smed_3503, renamed iseA (increased symbiotic effectiveness), had the largest impact, increasing M. truncatula biomass by 61%. iseA homologs were present in all currently sequenced S. medicae strains but were infrequent in other Sinorhizobium isolates. Rhizobium leguminosarum bv. viciae 3841 containing iseA led to more nodules on pea and lentil. Split-root experiments with M. truncatula A17 indicated that S. meliloti Rm1021 carrying the S. medicae iseA is less sensitive to plant-induced resistance to rhizobial infection, suggesting an interaction with the plant's regulation of nodule formation. IMPORTANCE Legume symbiosis with rhizobia is highly specific. Rhizobia that can nodulate and fix nitrogen on one legume species are often unable to associate with a different species. The interaction can be more subtle. Symbiotically enhanced growth of the host plant can differ substantially when nodules are formed by different rhizobial isolates of a species, much like disease severity can differ when conspecific isolates of pathogenic bacteria infect different cultivars. Much is known about bacterial genes essential for a productive symbiosis, but less is understood about genes that marginally improve performance. We used a proteomic strategy to identify Sinorhizobium genes that contribute to plant growth differences that are seen when two different strains nodulate M. truncatula A17. These genes could also alter the symbiosis between R. leguminosarum bv. viciae 3841 and pea or lentil, suggesting that this approach identifies new genes that may more generally contribute to symbiotic productivity.


Assuntos
Genes Bacterianos , Medicago truncatula/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium/genética , Simbiose/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Lens (Planta)/crescimento & desenvolvimento , Lens (Planta)/microbiologia , Medicago truncatula/crescimento & desenvolvimento , Fixação de Nitrogênio , /microbiologia , Proteômica , Rhizobium/genética
6.
Planta ; 252(6): 101, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33180185

RESUMO

MAIN CONCLUSION: In this review, we have included evolution of plant intracellular immune receptors, oligomeric complex formation, enzymatic action, engineering, and mechanisms of immune inspection for appropriate defense outcomes. NLR (Nucleotide binding oligomerization domain containing leucine-rich repeat) proteins are the intracellular immune receptors that recognize pathogen-derived virulence factors to confer effector-triggered immunity (ETI). Activation of plant defense by the NLRs are often conveyed through N-terminal Toll-like/ IL-1 receptor (TIR) or non-TIR (coiled-coils or CC) domains. Homodimerization or self-association property of CC/ TIR domains of plant NLRs contribute to their auto-activity and induction of in planta ectopic cell death. High resolution crystal structures of Arabidopsis thaliana RPS4TIR, L6TIR, SNC1TIR, RPP1TIR and Muscadinia rotundifolia RPV1TIR showed that interaction is mediated through one or two distinct interfaces i.e., αA and αE helices comprise AE interface and αD and αE helices were found to form DE interface. By contrast, conserved helical regions were determined for CC domains of plant NLRs. Evolutionary history of NLRs diversification has shown that paired forms were originated from NLR singletons. Plant TIRs executed NAD+ hydrolysis activity for cell death promotion. Plant NLRs were found to form large oligomeric complexes as observed in animal inflammasomes. We have also discussed different protein engineering methods includes domain shuffling, and decoy modification that increase effector recognition spectrum of plant NLRs. In summary, our review highlights structural basis of perception of the virulence factors by NLRs or NLR pairs to design novel classes of plant immune receptors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas NLR , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular/genética , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/metabolismo , Imunidade Vegetal/genética , Relação Estrutura-Atividade
7.
BMC Plant Biol ; 20(1): 319, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631232

RESUMO

BACKGROUND: Suppression and activation of plant defense genes is comprehensively regulated by WRKY family transcription factors. Chickpea, the non-model crop legume suffers from wilt caused by Fusarium oxysporum f. sp. ciceri Race1 (Foc1), defense response mechanisms of which are poorly understood. Here, we attempted to show interaction between WRKY70 and several downstream signaling components involved in susceptibility/resistance response in chickpea upon challenge with Foc1. RESULTS: In the present study, we found Cicer arietinum L. WRKY70 (CaWRKY70) negatively governs multiple defense responsive pathways, including Systemic Acquired Resistance (SAR) activation in chickpea upon Foc1 infection. CaWRKY70 is found to be significantly accumulated at shoot tissues of susceptible (JG62) chickpea under Foc1 stress and salicylic acid (SA) application. CaWRKY70 overexpression promotes susceptibility in resistant chickpea (WR315) plants to Foc1 infection. Transgenic plants upon Foc1 inoculation demonstrated suppression of not only endogenous SA concentrations but expression of genes involved in SA signaling. CaWRKY70 overexpressing chickpea roots exhibited higher ion-leakage and Foc1 biomass accumulation compared to control transgenic (VC) plants. CaWRKY70 overexpression suppresses H2O2 production and resultant reactive oxygen species (ROS) induced cell death in Foc1 infected chickpea roots, stem and leaves. Being the nuclear targeted protein, CaWRKY70 suppresses CaMPK9-CaWRKY40 signaling in chickpea through its direct and indirect negative regulatory activities. Protein-protein interaction study revealed CaWRKY70 and CaRPP2-like CC-NB-ARC-LRR protein suppresses hyper-immune signaling in chickpea. Together, our study provides novel insights into mechanisms of suppression of the multiple defense signaling components in chickpea by CaWRKY70 under Foc1 stress. CONCLUSION: CaWRKY70 mediated defense suppression unveils networking between several immune signaling events negatively affecting downstream resistance mechanisms in chickpea under Foc1 stress.


Assuntos
Cicer/genética , Fusarium/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Cicer/imunologia , Cicer/microbiologia , Cicer/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/imunologia , Brotos de Planta/microbiologia , Brotos de Planta/fisiologia , Mapeamento de Interação de Proteínas , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/administração & dosagem , Transdução de Sinais/imunologia , Fatores de Transcrição/genética
8.
Plant Mol Biol ; 100(4-5): 411-431, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30953279

RESUMO

KEY MESSAGE: Physical interaction and phosphorylation by CaMPK9 protects the degradation of CaWRKY40 that induces resistance response in chickpea to Fusarium wilt disease by modulating the transcription of defense responsive genes. WRKY transcription factors (TFs) are the global regulators of plant defense signaling that modulate immune responses in host plants by regulating transcription of downstream target genes upon challenged by pathogens. However, very little is known about immune responsive role of Cicer arietinum L. (Ca) WRKY TFs particularly. Using two contrasting chickpea genotypes with respect to resistance against Fusarium oxysporum f. sp. ciceri Race1 (Foc1), we demonstrate transcript accumulation of different CaWRKYs under multiple stresses and establish that CaWRKY40 triggers defense. CaWRKY40 overexpressing chickpea mounts resistance to Foc1 by positively modulating the defense related gene expression. EMSA, ChIP assay and real-time PCR analyses suggest CaWRKY40 binds at the promoters and positively regulates transcription of CaDefensin and CaWRKY33. Further studies revealed that mitogen Activated Protein Kinase9 (CaMPK9) phosphorylates CaWRKY40 by directly interacting with its two canonical serine residues. Interestingly, CaMPK9 is unable to interact with CaWRKY40 when the relevant two serine residues were replaced by alanine. Overexpression of serine mutated WRKY40 isoform in chickpea fails to provide resistance against Foc1. Mutated WRKY40Ser.224/225 to AA overexpressing chickpea resumes its ability to confer resistance against Foc1 after application of 26S proteasomal inhibitor MG132, suggests that phosphorylation is essential to protect CaWRKY40 from proteasomal degradation. CaMPK9 silencing also led to susceptibility in chickpea to Foc1. Altogether, our results elucidate positive regulatory roles of CaMPK9 and CaWRKY40 in modulating defense response in chickpea upon Foc1 infection.


Assuntos
Cicer/imunologia , Fusarium/fisiologia , Proteínas de Plantas/fisiologia , Cicer/metabolismo , Cicer/microbiologia , Proteína Quinase 9 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/fisiologia , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
9.
Plant Sci ; 276: 250-267, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30348325

RESUMO

Promoters of many defense related genes are enriched with W-box elements serving as binding sites for plant specific WRKY transcription factors. In this study, expression of WRKY40 transcription factor was analyzed in two contrasting susceptible (JG62) and resistant (WR315) genotypes of chickpea infected with Foc1. The resistant plants showed up-regulation of WRKY40 under Fusarium stress, whereas in susceptible plants WRKY40 expression was absent. Additionally, global changes in the histone modification patterns were studied in above two chickpea genotypes by immunoblotting and real-time PCR analyses under control and Fusarium infected conditions. Notably, region specific Histone 3 lysine 9 acetylation, a positive marker of transcription gets enriched at WRKY40 promoter during resistant interaction with Foc1. H3K9 Ac is less enriched at WRKY40 promoter in Foc1 infected susceptible plants. WRKY40 promoter activity was induced by jasmonic acid and pathogen treatment, while salicylic acid failed to stimulate such activity. Moreover, WRKY40 was found to bind to its own promoter and auto-regulates its activity. The present study also showed that heterologous over-expression of chickpea WRKY40 triggers defense response in Arabidopsis against Pseudomonas syringae. Overall, we present epigenetic and transcriptional control of WRKY40 in chickpea under Fusarium stress and its immunomodulatory role is tested in Arabidopsis.


Assuntos
Arabidopsis/imunologia , Cicer/genética , Resistência à Doença , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Ciclopentanos/metabolismo , Epigenômica , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Transgenes
10.
Planta ; 248(4): 751-767, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30046903

RESUMO

MAIN CONCLUSION: Attenuation in the activity of the negative regulators or the hyperactivity of plant innate immune receptors often causes ectopic defense activation manifested in severe growth retardation and spontaneous lesion formations, referred to as autoimmunity. In this review, we have described the cellular and molecular basis of the development of autoimmune responses for their useful applications in plant defense. Plants are exposed to diverse disease-causing pathogens, which bring infections by taking over the control on host immune machineries. To counter the challenges of evolving pathogenic races, plants recruit specific types of intracellular immune receptors that mostly belong to the family of polymorphic nucleotide-binding oligomerization domain-containing leucine-rich repeat (NLR) proteins. Upon recognition of effector molecules, NLR triggers hyperimmune signaling, which culminates in the form of a typical programmed cell death, designated hypersensitive response. Besides, few plant NLRs also guard certain host proteins known as 'guardee' that are modified by effector proteins. However, this fine-tuned innate immune system can be lopsided upon knock-out of the alleles that correspond to the host guardees, which mimick the presence of pathogen. The absence of pathogens causes inappropriate activation of the respective NLRs and results in the constitutive activation of plant defense and exhibiting autoimmunity. In plants, autoimmune mutants are readily scorable due to their dwarf phenotype and development of characteristic macroscopic disease lesions. Here, we summarize recent reports on autoimmune response in plants, how it is triggered, and phenotypic consequences associated with this phenomenon.


Assuntos
Autoimunidade/genética , Proteínas NLR/metabolismo , Imunidade Vegetal/genética , Plantas/imunologia , Alelos , Arabidopsis/genética , Arabidopsis/imunologia , Homeostase , Modelos Imunológicos , Mutação , Proteínas NLR/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Transdução de Sinais
11.
Plant Cell Rep ; 37(6): 849-863, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29520589

RESUMO

KEY MESSAGE: Transgenic Brassica juncea plants expressing Colocasia esculenta tuber agglutinin (CEA) shows the non-allergenic nature of the expressed protein leading to enhanced mortality and reduced fecundity of mustard aphid-Lipaphis erysimi. Lipaphis erysimi (common name: mustard aphid) is the most devastating sucking insect pest of Indian mustard (Brassica juncea L.). Colocasia esculenta tuber agglutinin (CEA), a GNA (Galanthus nivalis agglutinin)-related lectin has previously been reported by the present group to be effective against a wide array of hemipteran insects in artificial diet-based bioassays. In the present study, efficacy of CEA in controlling L. erysimi has been established through the development of transgenic B. juncea expressing this novel lectin. Southern hybridization of the transgenic plants confirmed stable integration of cea gene. Expression of CEA in T0, T1 and T2 transgenic plants was confirmed through western blot analysis. Level of expression of CEA in the T2 transgenic B. juncea ranged from 0.2 to 0.47% of the total soluble protein. In the in planta insect bioassays, the CEA expressing B. juncea lines exhibited enhanced insect mortality of 70-81.67%, whereas fecundity of L. erysimi was reduced by 49.35-62.11% compared to the control plants. Biosafety assessment of the transgenic B. juncea protein containing CEA was carried out by weight of evidence approach following the recommendations by FAO/WHO (Evaluation of the allergenicity of genetically modified foods: report of a joint FAO/WHO expert consultation, 22-25 Jan, Rome, http://www.fao.org/docrep/007/y0820e/y0820e00.HTM , 2001), Codex (Codex principles and guidelines on foods derived from biotechnology, Food and Agriculture Organization of the United Nations, Rome; Codex, Codex principles and guidelines on foods derived from biotechnology, Food and Agriculture Organization of the United Nations, Rome, 2003) and ICMR (Indian Council of Medical Research, guidelines for safety assessment of food derived from genetically engineered plants, http://www.icmr.nic.in/guide/Guidelines%20for%20Genetically%20Engineered%20Plants.pdf , 2008). Bioinformatics analysis, pepsin digestibility, thermal stability assay, immuno-screening and allergenicity assessment in BALB/c mice model demonstrated that the expressed CEA protein from transgenic B. juncea does not incite any allergenic response. The present study establishes CEA as an efficient insecticidal and non-allergenic protein to be utilized for controlling mustard aphid and similar hemipteran insects through the development of genetically modified plants.


Assuntos
Aglutininas/metabolismo , Afídeos/fisiologia , Colocasia/genética , Mostardeira/imunologia , Doenças das Plantas/imunologia , Aglutininas/genética , Alérgenos/imunologia , Animais , Feminino , Camundongos Endogâmicos BALB C , Mostardeira/genética , Mostardeira/parasitologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Plantas Geneticamente Modificadas
12.
Plant Cell Physiol ; 58(11): 1934-1952, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016956

RESUMO

Drought and salinity are the two major environmental constraints that severely affect global agricultural productivity. Plant-specific HD-Zip transcription factors are involved in plant growth, development and stress responses. In the present study, we explored the functional characteristics and regulation of a novel HD-Zip (I) gene from chickpea, CaHDZ12, in response to water-deficit and salt-stress conditions. Transgenic tobacco lines over-expressing CaHDZ12 exhibited improved tolerance to osmotic stresses and increased sensitivity to abscisic acid (ABA). Physiological compatibility of transgenic lines was found to be more robust compared to the wild-type plants under drought and salinity stress. Additionally, expression of several stress-responsive genes was significantly induced in CaHDZ12 transgenic plants. On the other hand, silencing of CaHDZ12 in chickpea resulted in increased sensitivity to salt and drought stresses. Analysis of different promoter deletion mutants identified CaWRKY70 transcription factor as a transcriptional regulator of CaHDZ12 expression. In vivo and in vitro interaction studies detected an association between CaWRKY70 and CaHDZ12 promoter during stress responses. Epigenetic modifications underlying histone acetylation at the CaHDZ12 promoter region play a significant role in stress-induced activation of this gene. Collectively, our study describes a crucial and unique mechanistic link between two distinct transcription factors in regulating plant adaptive stress response.


Assuntos
Cicer/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Acetilação , Cicer/efeitos dos fármacos , Cicer/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Zíper de Leucina , Lisina/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , /fisiologia , Fatores de Transcrição/genética
13.
BMC Biotechnol ; 16: 24, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26932667

RESUMO

BACKGROUND: Rice sheath blight, caused by Rhizoctonia solani is one of the most devastating diseases of rice. It is associated with significant reduction in rice productivity worldwide. A mutant variant of mannose binding Allium sativum leaf agglutinin (mASAL) was previously reported to exhibit strong antifungal activity against R. solani. In this study, the mASAL gene has been evaluated for its in planta antifungal activity in rice plants. RESULTS: mASAL was cloned into pCAMBIA1301 binary vector under the control of CaMV35S promoter. It was expressed in an elite indica rice cv. IR64 by employing Agrobacterium tumefaciens-mediated transformation. Molecular analyses of transgenic plants confirmed the presence and stable integration of mASAL gene. Immunohistofluorescence analysis of various tissue sections of plant parts clearly indicated the constitutive expression of mASAL. The segregation pattern of mASAL transgene was observed in T1 progenies in a 3:1 Mendelian ratio. The expression of mASAL was confirmed in T0 and T1 plants through western blot analysis followed by ELISA. In planta bioassay of transgenic lines against R. solani exhibited an average of 55 % reduction in sheath blight percentage disease index (PDI). CONCLUSIONS: The present study opens up the possibility of engineering rice plants with the antifungal gene mASAL, conferring resistance to sheath blight.


Assuntos
Antifúngicos/farmacologia , Alho/química , Oryza/efeitos dos fármacos , Folhas de Planta/química , Lectinas de Plantas/farmacologia , Antifúngicos/química , Alho/genética , Mutação/genética , Lectinas de Plantas/química , Lectinas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos
14.
BMC Microbiol ; 15: 237, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26502719

RESUMO

BACKGROUND: Mutant Allium sativum leaf agglutinin (mASAL) is a potent, biosafe, antifungal protein that exhibits fungicidal activity against different phytopathogenic fungi, including Rhizoctonia solani. METHODS: The effect of mASAL on the morphology of R.solani was monitored primarily by scanning electron and light microscopic techniques. Besides different fluorescent probes were used for monitoring various intracellular changes associated with mASAL treatment like change in mitochondrial membrane potential (MMP), intracellular accumulation of reactive oxygen species (ROS) and induction of programmed cell death (PCD). In addition ligand blot followed by LC-MS/MS analyses were performed to detect the putative interactors of mASAL. RESULTS: Knowledge on the mode of function for any new protein is a prerequisite for its biotechnological application. Detailed morphological analysis of mASAL treated R. solani hyphae using different microscopic techniques revealed a detrimental effect of mASAL on both the cell wall and the plasma membrane. Moreover, exposure to mASAL caused the loss of mitochondrial membrane potential (MMP) and the subsequent intracellular accumulation of reactive oxygen species (ROS) in the target organism. In conjunction with this observation, evidence of the induction of programmed cell death (PCD) was also noted in the mASAL treated R. solani hyphae. Furthermore, we investigated its interacting partners from R. solani. Using ligand blots followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses, we identified different binding partners including Actin, HSP70, ATPase and 14-3-3 protein. CONCLUSIONS: Taken together, the present study provides insight into the probable mode of action of the antifungal protein, mASAL on R. solani which could be exploited in future biotechnological applications.


Assuntos
Aglutininas/farmacologia , Antifúngicos/farmacologia , Alho/química , Proteínas Mutantes/farmacologia , Rhizoctonia/efeitos dos fármacos , Aglutininas/isolamento & purificação , Antifúngicos/isolamento & purificação , Apoptose , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Cromatografia Líquida , Hifas/citologia , Hifas/efeitos dos fármacos , Hifas/fisiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Microscopia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/fisiologia , Proteínas Mutantes/isolamento & purificação , Mapeamento de Interação de Proteínas , Espécies Reativas de Oxigênio/análise , Rhizoctonia/citologia , Rhizoctonia/fisiologia , Espectrometria de Massas em Tandem
15.
J Agric Food Chem ; 61(48): 11858-64, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24219138

RESUMO

Genetic engineering has established itself to be an important tool for crop improvement. Despite the success, there is always a risk of food allergy induced by alien gene products. The present study assessed the biosafety of mutant Allium sativum leaf agglutinin (mASAL), a potent antifungal protein generated by site directed mutagenesis of Allium sativum leaf agglutinin (ASAL). mASAL was cloned in pET28a+ and expressed in E. coli, and the safety assessment was carried out according to the FAO/WHO guideline (2001). Bioinformatics analysis, pepsin digestion, and thermal stability assay showed the protein to be nonallergenic. Targeted sera screening revealed no significant IgE affinity of mASAL. Furthermore, mASAL sensitized Balb/c mice showed normal histopathology of lung and gut tissue. All results indicated the least possibility of mASAL being an allergen. Thus, mASAL appears to be a promising antifungal candidate protein suitable for agronomical biotechnology.


Assuntos
Aglutininas/genética , Aglutininas/imunologia , Antifúngicos/imunologia , Alho/imunologia , Aglutininas/química , Animais , Antifúngicos/química , Feminino , Alho/química , Alho/genética , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/imunologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estabilidade Proteica
16.
PLoS One ; 6(4): e18593, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21490929

RESUMO

BACKGROUND: Allium sativum leaf agglutinin (ASAL) is a 25-kDa homodimeric, insecticidal, mannose binding lectin whose subunits are assembled by the C-terminal exchange process. An attempt was made to convert dimeric ASAL into a monomeric form to correlate the relevance of quaternary association of subunits and their functional specificity. Using SWISS-MODEL program a stable monomer was designed by altering five amino acid residues near the C-terminus of ASAL. METHODOLOGY/PRINCIPAL FINDINGS: By introduction of 5 site-specific mutations (-DNSNN-), a ß turn was incorporated between the 11(th) and 12(th) ß strands of subunits of ASAL, resulting in a stable monomeric mutant ASAL (mASAL). mASAL was cloned and subsequently purified from a pMAL-c2X system. CD spectroscopic analysis confirmed the conservation of secondary structure in mASAL. Mannose binding assay confirmed that molecular mannose binds efficiently to both mASAL and ASAL. In contrast to ASAL, the hemagglutination activity of purified mASAL against rabbit erythrocytes was lost. An artificial diet bioassay of Lipaphis erysimi with mASAL displayed an insignificant level of insecticidal activity compared to ASAL. Fascinatingly, mASAL exhibited strong antifungal activity against the pathogenic fungi Fusarium oxysporum, Rhizoctonia solani and Alternaria brassicicola in a disc diffusion assay. A propidium iodide uptake assay suggested that the inhibitory activity of mASAL might be associated with the alteration of the membrane permeability of the fungus. Furthermore, a ligand blot assay of the membrane subproteome of R. solani with mASAL detected a glycoprotein receptor having interaction with mASAL. CONCLUSIONS/SIGNIFICANCE: Conversion of ASAL into a stable monomer resulted in antifungal activity. From an evolutionary aspect, these data implied that variable quaternary organization of lectins might be the outcome of defense-related adaptations to diverse situations in plants. Incorporation of mASAL into agronomically-important crops could be an alternative method to protect them from dramatic yield losses from pathogenic fungi in an effective manner.


Assuntos
Antifúngicos/farmacologia , Inseticidas/farmacologia , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Alternaria/efeitos dos fármacos , Animais , Antifúngicos/química , Afídeos/efeitos dos fármacos , Western Blotting , Cromatografia de Afinidade , Cromatografia em Gel , Fusarium/efeitos dos fármacos , Alho/química , Inseticidas/química , Mutagênese Sítio-Dirigida , Folhas de Planta/química , Lectinas de Plantas/genética , Rhizoctonia/efeitos dos fármacos , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...